50 research outputs found

    The development of novel LTA4H modulators to selectively target LTB4 generation

    Get PDF
    The pro-inflammatory mediator leukotriene B4 (LTB4) is implicated in the pathologies of an array of diseases and thus represents an attractive therapeutic target. The enzyme leukotriene A4 hydrolase (LTA4H) catalyses the distal step in LTB4 synthesis and hence inhibitors of this enzyme have been actively pursued. Despite potent LTA4H inhibitors entering clinical trials all have failed to show efficacy. We recently identified a secondary anti-inflammatory role for LTA4H in degrading the neutrophil chemoattractant Pro-Gly-Pro (PGP) and rationalized that the failure of conventional LTA4H inhibitors may be that they inadvertently prevented PGP degradation. We demonstrate that these inhibitors do indeed fail to discriminate between the dual activities of LTA4H, and enable PGP accumulation in mice. Accordingly, we have developed novel compounds that potently inhibit LTB4 generation whilst leaving PGP degradation unperturbed. These novel compounds could represent a safer and superior class of LTA4H inhibitors for translation into the clinic

    CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes

    Get PDF
    CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene

    Molecular Dynamics Simulation Study and Hybrid Pharmacophore Model Development in Human LTA4H Inhibitor Design

    Get PDF
    Human leukotriene A4 hydrolase (hLTA4H) is a bi-functional enzyme catalyzes the hydrolase and aminopeptidase functions upon the fatty acid and peptide substrates, respectively, utilizing the same but overlapping binding site. Particularly the hydrolase function of this enzyme catalyzes the rate-limiting step of the leukotriene (LT) cascade that converts the LTA4 to LTB4. This product is a potent pro-inflammatory activator of inflammatory responses and thus blocking this conversion provides a valuable means to design anti-inflammatory agents. Four structurally very similar chemical compounds with highly different inhibitory profile towards the hydrolase function of hLTA4H were selected from the literature. Molecular dynamics (MD) simulations of the complexes of hLTA4H with these inhibitors were performed and the results have provided valuable information explaining the reasons for the differences in their biological activities. Binding mode analysis revealed that the additional thiophene moiety of most active inhibitor helps the pyrrolidine moiety to interact the most important R563 and K565 residues. The hLTA4H complexes with the most active compound and substrate were utilized in the development of hybrid pharmacophore models. These developed pharmacophore models were used in screening chemical databases in order to identify lead candidates to design potent hLTA4H inhibitors. Final evaluation based on molecular docking and electronic parameters has identified three compounds of diverse chemical scaffolds as potential leads to be used in novel and potent hLTA4H inhibitor design

    Aspirin Treatment of Mice Infected with Trypanosoma cruzi and Implications for the Pathogenesis of Chagas Disease

    Get PDF
    Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection

    Residues from transmembrane helices 3 and 5 participate in leukotriene B-4 binding to BLT1

    No full text
    Leukotrienes are inflammatory mediators that bind to seven transmembrane, G-protein-coupled receptors (GPCRs). Here we examine residues from transmembrane helices 3 and 5 of the leukotriene B-4 (LTB4) receptor BLT1 to elucidate how these residues are involved in ligand binding. We have selected these residues on the basis of (1) amino acid sequence analysis, (2) receptor binding and activation studies with a variety of leukotriene-like ligands and recombinant BLT1 receptors, (3) previously published recombinant BLT1 mutants, and (4) a computed model of the active structure of the BLT1 receptor. We propose that LTB4 binds with the polar carboxylate group of LTB4 near the extracellular surface of BLT1 and with the hydrophobic LTB4 tail pointing into the transmembrane regions of the receptor protein. The carboxylate group and the two hydroxyls of LTB4 interact with Arg178 and Glu185 in transmembrane helix 5. Residues from transmembrane helix 3, Val 105 and Ile 108, also line the pocket deeper inside the receptor. LTB4 is becoming increasingly important as an immunomodulator during a number of pathologies, including atherosclerosis. Detailed information about the LTB4 binding mechanism, and the receptor residues involved, will hopefully aid in the design of new immunomodulatory drugs

    Non-specific effects of leukotriene synthesis inhibitors on HeLa cell physiology

    No full text
    We examined the effects of various leukotriene synthesis inhibitors on calcium signalling in HeLa cells, before and after transfection with BLT1. All of the inhibitors studied were found to reduce increases in intracellular calcium concentration induced by BLT1, but also by an ionophore or activation of various G-protein coupled receptors, regardless of BLT1 expression. In order to explore the mechanism of these apparently general effects we examined HeLa cell expression of leukotriene receptors and biosynthetic enzymes and found that the genes for key leukotriene synthesis enzymes and all of the leukotriene receptors were not expressed. Leukotrienes are involved in the pathology of a variety of cancers, and for HeLa cells leukotrienes have been reported to be important for aspects of the carcinogenic phenotype. We find that leukotriene synthesis inhibitors have non-specific effects, so careful controls are necessary to avoid interpreting non-specific effects as evidence for leukotriene involvement

    Fluorescent leukotriene B-4: potential applications

    No full text
    Leukotriene B-4 (LTB4) is a potent lipid mediator of inflammation that acts primarily via a seven-transmembrane-spanning, G-protein-coupled receptor denoted BLT1. Here, we describe the synthesis and characterization of fluorescent analogs of LTB4 that are easy to produce, inexpensive, and without the disadvantages of a radioligand. Fluorescent LTB4 is useful for labeling LTB4 receptors for which no antibodies are available and for performing one-step fluorescence polarization assays conducive to high-throughput screening. We found that orange and green fluorescent LTB4 were full agonists that activated the LTB4 receptor BLT1 with EC50 values of 68 and 40 nM, respectively (4.5 nM for unmodified LTB4). Flow cytometric measurements and confocal imaging showed that fluorescent LTB4 colocalized with BLT1. Fluorescence polarization measurements showed that orange fluorescent LTB4 bound to BLT1 with a K-d of 66 nM and that this binding could be displaced by unlabeled LTB4 and other BLT1-specific ligands. Fluorescent LTB4 analogs were also able to displace tritiated LTB4. Orange fluorescent LTB4 binding to enhanced green fluorescent protein-tagged BLT1 could be observed using fluorescence resonance energy transfer. In addition to being a useful alternative to radiolabeled LTB4, the unique properties of fluorescently labeled LTB4 allow a variety of detection technologies to be used
    corecore